

Cookiecutter Fastapi

[image: PyPI] [https://pypi.org/project/fastapi-paginator/]
[image: Status] [https://pypi.org/project/fastapi-paginator/]
[image: Read the documentation at https://cookiecutter-fastapi.readthedocs.io/]
[image: python] [https://github.com/Tobi-De/cookiecutter-fastapi]
[image: MIT License] [https://github.com/Tobi-De/cookiecutter-fastapi/blob/main/LICENSE]
[image: black] [https://github.com/psf/black]

A Cookiecutter [https://github.com/audreyr/cookiecutter] template for fastapi [https://fastapi.tiangolo.com] projects, inspired by cookiecutter-django [https://github.com/cookiecutter/cookiecutter-django].

✨📚✨ Read the full documentation [https://cookiecutter-fastapi.readthedocs.io/]

Features

	fastapi-users [https://github.com/fastapi-users/fastapi-users] for users authentication and management

	Pydantic [https://pydantic-docs.helpmanual.io/] for settings management

	Include a cli tool built with typer [https://github.com/tiangolo/typer] to simplify project management

	Pre-commit [https://pre-commit.com/] integration included by default

	Tortoise-orm [https://tortoise.github.io/] and aerich [https://github.com/tortoise/aerich] database setup by default but switchable

	Limit-offset pagination helpers included

	Sending emails using aiosmtplib [https://aiosmtplib.readthedocs.io/en/stable/client.html] or Amazon SES [https://aws.amazon.com/fr/ses/]

	Optional integration with sentry [https://docs.sentry.io/platforms/python/] for error logging

	Production Dockerfile [https://www.docker.com/] included

	Integration with arq [https://github.com/samuelcolvin/arq] for background tasks

	Optional setup of HTML templates rendering using jinja2 [https://jinja.palletsprojects.com/en/3.1.x/]

	Procfile [https://devcenter.heroku.com/articles/procfile] for deploying to heroku

	Implement the Health Check API patterns [https://microservices.io/patterns/observability/health-check-api.html] on your fastapi application

ORM/ODM options

	Tortoise ORM [https://tortoise.github.io/]

	Beanie [https://github.com/roman-right/beanie]

Usage

Install the cookiecutter package:

pip install cookiecutter black isort

Note: Black and isort are used to format your project right after it has been generated.

Now run it against this repo:

cookiecutter https://github.com/Tobi-De/cookiecutter-fastapi

You’ll be prompted for some values. Provide them, then a fastapi project will be created for you.

Contributing

Contributions are very welcome. To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license,
Cookiecutter Fastapi is free and open source software.

Issues

If you encounter any problems,
please file an issue [https://github.com/tobi-de/cookiecutter-fastapi/issues] along with a detailed description.

User Guide

Introduction: Structuring of API

	app: Contains all the API related code base.

	core: Contains core modules of your application.

	auth.py: Contains authentication configuration based on fastapi-users [https://fastapi-users.github.io/fastapi-users/10.0/].

	config.py: Contains main global settings of your application.

	logger.py: Logging module for application.

	pagination.py: Contains simple helpers to apply limit-offset based pagination on your api routes.

	db: Main package for your database / orm configuration.

	config.py: Main module for your database configuration.

	models.py: Contains some common abstract base models for your apps database models. Read the WHY section bellow to understand what apps are.

	emails: Contains html templates for your emails.

	base.html: Base html template from which all your other email templates must inherit.

	welcome.html: Welcome email template, sent when a new user registers.

	frontend: Contains all the python code for your frontend. This directory is only present when you enter y with the render_html option. More details about this directory are available in the WHY section.

	routers: All your frontend API routers.

	home.py: This is an example, containing a single route to render the html of the home page.

	app.py: The frontend is in fact a separate fastapi application defined in this module and mounted on the main application in the main.py file.

	utils.py: Contains python utilities specific to frontend stuff.

	services: Contains classes and functions intended to connect to external resources that your application could use.

	email: Contains helper modules to connect to an email provider to send emails.

	errors.py: Errors related to sending an email.

	null.py: A dummy email provider when you don’t want to send real emails.

	ses.py: Email provider class to send email with amazon ses [https://aws.amazon.com/fr/ses/] using aioaws [https://github.com/samuelcolvin/aioaws]. This file is only included if you choose AMAZON SES as mail_service.

	smtp.py: Email provider class to send email via smtp [https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol] using aiosmtplib [https://aiosmtplib.readthedocs.io/en/stable/usage.html#authentication]. This file is only included if you choose SMTP as mail_service.

	static: Folder to store static files, only included if you enter y in the render_html option.

	style.css: Your project css.

	templates: Html templates directory, only include if you enter y to the render_html option.

	base.html: Base html for all your html templates.

	index.html: Example html for the index page.

	users: Users management app.

	tests: Tests for your users’ app.

	factories.py: Test factories for the users models.

	manager.py: User manager class, used by the fastapi-users [https://fastapi-users.github.io/fastapi-users/10.0/configuration/user-manager/] package. You can use this concept for your other apps if you like it.

	models.py: Users database models.

	routes.py: Users API router and routes.

	schemas.py: Users pydantic schemas.

	tasks.py: Task queues tasks specific to the user’s app.

	utils.py: Utilities specific to the user’s app.

	health.py: Health API route.

	initial_data.py: Contains functions that create some initial data for your application.

	lifetime.py: In this module are defined the start and shutdown event handlers for your application.

	main.py: Entry point of your application, the main FastAPI application is defined here.

	utils.py: Global application utilities, which can be turned into a module later if there are too many.

	worker.py: Task queue worker configuration file.

	tests: Your application tests.

	.env.template: A template to create your .env file.

	.gitignore: List common files and directories of python projects to keep out of git, read here [https://git-scm.com/docs/gitignore] for more details.

	Dockerfile: Production dockerfile [https://www.docker.com/] if you enter y to the use_docker option.

	.pre-commit-config.yaml: pre-commit [https://pre-commit.com/] configuration file for auto formatting of your code on each commit.

	manage.py: Cli app to simplify project management, run python manage.py --help for all available commands.

	Procfile: Heroku Procfile [https://devcenter.heroku.com/articles/procfile] configuration file, only present when you choose y to the user_heroku option.

	pyproject.toml: Application dependencies, packaging data and metadata, for more details read this [https://peps.python.org/pep-0621/].

	README.md: Details and setup guide for your application.

	runtime.txt: Heroku runtime [https://devcenter.heroku.com/articles/python-runtimes] configuration file, only present when you choose y to the user_heroku option.

	setup.cfg: A python configuration file for external tools like flake8, mypy etc., but I strongly recommend to put them in the pyproject.toml file if the tool supports it. This file will probably be removed in future versions when all tools used here add support for the pyproject.toml file.

	gunicorn.conf.py: gunicorn [https://docs.gunicorn.org/en/stable/index.html] configuration file for deployment.

Most of the ideas and patterns that this template follows were inspired by OSS (open source software) projects and tools.
I took the most interesting (from my point of view) patterns and applied them when creating this cookiecutter, and you are by no
means obliged to follow 100% of the structure described here. I’m always learning new things and will improve this project over time.
If you think something doesn’t make sense in the files and folder structures, the code base, or if you have suggestions or improvements or
anything else really, please feel free to open an issue [https://github.com/Tobi-De/cookiecutter-fastapi/issues/new] or a discussion [https://github.com/Tobi-De/cookiecutter-fastapi/discussions/new], I will be glad to discuss with you.
This cookiecutter can’t cover every use case, so here are some alternatives if this template doesn’t fit your needs:

	fastapi-template [https://github.com/99sbr/fastapi-template]

	manage-fastapi [https://github.com/ycd/manage-fastapi]

	fastapi-nano [https://github.com/rednafi/fastapi-nano]

Design Decisions

n this section, we’ll explore some of the design decisions made in the creation of the cookicutter-fastapi project template.
We’ll discuss the reasoning behind the choices made in terms of project structure, code organization, and other key aspects of the template.
This section is intended to provide insight into the thought process behind the template, as well as to help users understand why certain design decisions were made.

Use of Django-style “apps” in the Template

TL;DR: Features bound to the same domain in the business logic are encapsulated in an application.
Applications should be small, simple and focus on a single task. E.g. the users app for users management.

One of the core design decisions of the cookicutter-fastapi project template is the use of the Django-style “apps” structure.
As a Django [https://www.djangoproject.com/] user, I appreciate the concept of applications [https://docs.djangoproject.com/en/4.0/ref/applications/] which is basically the clear and distinct separation of functionality into reusable packages.
With this in mind, I set out to emulate this idea with FastAPI.

FastAPI does not impose any kind of structure on users, which is great for simple projects, but for more complex projects, a well-structured
and organized base is necessary. If you search for FastAPI projects on GitHub [https://github.com/search?q=fastapi], you will find a wide variety of styles and structures,
each reflecting the experience and preferences of the individual developer. In the cookicutter-fastapi template, I have implemented a
structure that represents my own experience as a Django developer, and I believe it will be familiar and intuitive to many other django developers.

The idea behind the apps structure is to encapsulate features that are bound to the same domain in the business logic within a single application.
Each application should be small, simple, and focused on a single task. For example in the context on an ecommerce web app, a users application
would be responsible for managing users, while an orders application would be responsible for managing orders. In my opinion, this structure allows
a better organization and a better maintainability of the project as it grows and becomes more complex.

The frontend application

When I use fastapi, it’s usually for small backend services and not for full fledge server side rendered (SSR)
projects (think of an e-commerce site with django or laravel for example). I mainly use fastapi for relatively simple backend
APIs and I rarely need to serve html and when I do it’s for very few pages. If I needed to build
a big monolith that serves html, I would probably choose django. The idea here is that the frontend directory is
an application in your project, it will serve the few html pages you need. If you build
a public weather API for example, but you need a few html pages to present the project, a home page, a contact page and maybe some user
account pages, you can use the frontend app for that instead of creating a separate html/css/js or
<place your favorite js framework here> project for that. Spreading the routes for those pages in your API routes is not a good idea
in my opinion. The frontend application is a bit special in that it is a full Fastapi application that is mounted [https://fastapi.tiangolo.com/advanced/sub-applications/] on top of your main application.
I don’t think this approach can scale to hundreds of html pages, so think twice before you consider using it for a huge project (frankly I don’t know, I haven’t tried it, I could be wrong).

Note: Checkout htmx [https://htmx.org/] if you to improve your frontend development and user experience without relying on a complex SPA javascript framework.

Deployment

For deployment the official fastapi documentation has an excellent guide on the subject here [https://fastapi.tiangolo.com/deployment/].
If you want some platform recommendation check this page [https://tobi-de.github.io/fuzzy-couscous/deployment/].

Note: This page is a work in progress, new content will be added with new release of cookiecutter-fastapi.

Contributor Guide

Thank you for your interest in improving cookiecutter fastapi.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/tobi-de/cookiecutter-fastapi]

	Documentation [https://cookiecutter-fastapi.readthedocs.io/]

	Issue Tracker [https://github.com/tobi-de/cookiecutter-fastapi/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/tobi-de/cookiecutter-fastapi/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/tobi-de/cookiecutter-fastapi/issues].

How to set up your development environment

You need Python 3.7+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run cookiecutter-fastapi

How to test the project

Run the full test suite:

$ pytest

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/tobi-de/cookiecutter-fastapi/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
tobidegnon@proton.me.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright (c) 2022 Tobi DEGNON

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

Deployment

This pages list useful resources to help your deploy your project, it’s not meant to be a complete guide, but rather a list of links to help you get started.
F

 nav.xhtml

 Table of Contents

 		
 Cookiecutter Fastapi

_static/minus.png

_static/plus.png

_static/file.png

